33 research outputs found

    Science and technology issues in spacecraft fire safety

    Get PDF
    The space station, a permanently-inhabited orbiting laboratory, places new demands on spacecraft fire safety. Long-duration missions may call for more-constrained fire controls, but the accessibility of the space station to a variety of users may call for less-restrictive measures. This paper discusses fire safety issues through a review of the state of the art and a presentation of key findings from a recent NASA Lewis Research Center Workshop. The subjects covered are the fundamental science of low-gravity combustion and the technology advances in fire detection, extinguishment, materials assessment, and atmosphere selection. Key concerns are for the adoption of a fire-safe atmosphere and the substitution for the effective but toxic extinguishant, halon 1301. The fire safety studies and reviews provide several recommendations for further action. One is the expanded research in combustion, sensors, and materials in the low-gravity environment of space. Another is the development of generalized fire-safety standards for spacecraft through cooperative endeavors with aerospace and outside Government and industry sources

    Fire behavior and risk analysis in spacecraft

    Get PDF
    Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft

    Microgravity combustion fundamentals

    Get PDF
    A brief summary of some of the important physical processes involved in low gravity combustion is given. While the discussion is generally limited to the processes involved in the combustion of continuous, solid, nonmetallic fuels, much of the reasoning presented can be applied to other fuel types and configurations

    Facilities for microgravity combustion research

    Get PDF
    Combustion science and applications have benefited in unforeseen ways from experimental research performed in the low-gravity environment. The capability to control for the first time the influence of gravitational buoyancy has provided some insight into soot formation in droplet combustion, the nature of flammability limits in premixed gases, and the relationship between normal-gravity and low-gravity material flammability that may influence how materials are best selected for routine use in habitable spacecraft. The opportunity to learn about these complex phenomena is derived from the control of the ambient body-force field and, perhaps as importantly, the simplified boundary conditions that can be established in well designed low-gravity combustion experiments. A description of the test facilities and typical experimental apparatus are provided; and conceptual plans for a Space Station Freedom capability, the Modular Combustion Facility, are described

    Risks, designs, and research for fire safety in spacecraft

    Get PDF
    Current fire protection for spacecraft relies mainly on fire prevention through the use of nonflammable materials and strict storage controls of other materials. The Shuttle also has smoke detectors and fire extinguishers, using technology similar to aircraft practices. While experience has shown that the current fire protection is adequate, future improvements in fire safety technology to meet the challenges of long duration space missions, such as the Space Station Freedom, are essential. All spacecraft fire protection systems, however, must deal with the unusual combustion characteristics and operational problems in the low gravity environment. The features of low gravity combustion that affect spacecraft fire safety, and the issues in fire protection for Freedom that must be addressed eventually to provide effective and conservative fire protection systems are discussed

    Transient Measurements of Temperature and Radiation Intensity in Spherical Microgravity Diffusion Flames

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76396/1/AIAA-2006-746-159.pd

    Opposed-Flow Flame Spreading in Reduced Gravity

    Get PDF
    Experimental results obtained in drop towers and in Space Shuttle based experiments coupled with modelling efforts are beginning to provide information that is allowing an understanding to be developed of the physics of opposed-flow flame spread at reduced gravity where the spread rate and flow velocity are comparable and of the role played by radiative and diffusive processes in flame spreading in microgravity. Here we describe one Space Shuttle based experiment on flame spreading in a quiescent environment, the Solid Surface Combustion Experiment, SSCE, one planned microgravity experiment on flame spreading in a radiatively-controlled, forced opposing flow environment, the Diffusive and Radiative Transport in Fires Experiment, DARTFire, modelling efforts to support these experiments, and some results obtained to date

    Combustion of solid fuel in very low speed oxygen streams

    Get PDF
    In reduced gravity, the combustion of solid fuel in low-speed flow can be studied. The flame behavior in this low-speed regime will fill a void in our understanding of the flow effect on combustion. In addition, it is important for spacecraft fire safety considerations. In this work, modeling and experimental work on low-speed forced-concurrent-flow flame spread are carried out. In addition, experiments on reduced-gravity buoyant-flow flame spread are performed

    Lunar Resource Utilization: Development of a Reactor for Volatile Extraction from Regolith

    Get PDF
    The extraction and processing of planetary resources into useful products, known as In- Situ Resource Utilization (ISRU), will have a profound impact on the future of planetary exploration. One such effort is the RESOLVE (Regolith and Environment Science, Oxygen and Lunar Volatiles Extraction) Project, which aims to extract and quantify these resources. As part of the first Engineering Breadboard Unit, the Regolith Volatiles Characterization (RVC) reactor was designed and built at the NASA Glenn Research Center. By heating and agitating the lunar regolith, loosely bound volatiles, such as hydrogen and water, are released and stored in the reactor for later analysis and collection. Intended for operation on a robotic rover, the reactor features a lightweight, compact design, easy loading and unloading of the regolith, and uniform heating of the regolith by means of vibrofluidization. The reactor performance was demonstrated using regolith simulant, JSC1, with favorable results

    Solid Surface Combustion Experiment Yields Significant Observations

    Get PDF
    The spread of a flame over solid fuel is not only a fundamental textbook combustion phenomenon, but also the central element of destructive fires that cause tragic loss of life and property each year. Throughout history, practical measures to prevent and fight fires have been developed, but these have often been based on lessons learned in a costly fire. Since the 1960 s, scientists and engineers have employed powerful tools of scientific research to understand the details of flame spread and how a material can be rendered nonflammable. High-speed computers have enabled complex flame simulations, whereasand lasers have provided measurements of the chemical composition, temperature, and air velocities inside flames. The microgravity environment has emerged as the third great tool for these studies. Spreading flames are complex combinations of chemical reactions and several physical processes including the transport of oxygen and fuel vapor to the flame and the transfer of heat from the flame to fresh fuel and to the surroundings. Depending on its speed, air motion in the vicinity of the flame can affect the flame in substantially different ways. For example, consider the difference between blowing on a campfire and blowing out a match. On Earth, gravity induces air motion because of buoyancy (the familiar rising hot gases); this process cannot be controlled experimentally. For theoreticians, buoyant air motion complicates the problem modeling of flame spread beyond the capacity of modern computers to simulate. The microgravity environment provides experimental control of air motion near spreading flames, with results that can be compared with detailed theory. The Solid Surface Combustion Experiment (SSCE) was designed to obtain benchmark flame spreading data in quiescent test atmospheres--the limiting case of flames spreading. Professor Robert Altenkirch, Vice President for Research at Mississippi State University, proposed the experiment concept, and the NASA Lewis Research Center designed, built, and tested the SSCE hardware. It was the first microgravity science experiment built by Lewis for the space shuttle and the first combustion science experiment flown in space
    corecore